
N90-16444 • __j 2 i " •

OVERVIEW AND EXTENSIONS OF A SYSTEM FOR

ROUTING DIRECTED GRAPHS ON SIMD ARCHITECTURES *

Sherry[Tomboufian

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton VA 23665

ABSTRACT

Many problems can be described in terms of directed graphs that con-

tain a large number of vertices where simple computations occur using

data from adjacent vertices. A method is given for parallelising such

problems on an SIMD machine model that uses only nearest neighbor

connections for communication, and has no facility for local indirect

addressing. Each vertex of the graph will be assigned to a processor

in the machine. Rules for a labeling are introduced that support the

use of a simple algorithm for movement of data along the edges of the

graph. Additional algorithms are defined for addition and deletion of

edges. Modifying or adding a new edge takes the same time as parallel

traversal. This combination of architecture and algorithms defines a

system that is relatively simple to build and can do fast graph process-

ing. All edges can be traversed in parallel in time O(T), where T is

empirically proportional to the average path length in the embedding

times the average degree of the graph. Additionally we present an ex-
tension to the above method which allows for enhanced performance

by allowing some broadcasting capabilities.

Keywords: routing algorithm, SIMD architecture, parallel processing,

graph embedding, interconnect]on network

INTRODUCTION

There are many problems that can be formulated as directed graphs.

Such problems include circuit simulation, semantic networks and to-

pography. Typically the real-world versions of these problems contain

100,000 vertices or more, and while the computations that occur at

each vertex are simple, the size of the problems makes them compu-

tationally intensive. A natural way to parallelise these problems is a

paradigm in which each processor is assigned a vertex in the graph,

and there is some mechanism for realizing the arcs. This fine grained

approach suggests the use of SIMD architectures, which can be built

with many thousands of processors.

The problem with using SIMD architectures is that often they do

not easily support generalized message passing schemes. This paper

presents a method of embedding graphs in a class of SIMD architectures

by using a special space-time labeling that supports message delivery
and incremental addition of paths. The algorithms for this system axe

presented in {Refs. 16, 17}. Basic concepts of the system will be re-

viewed, followed by an important generalization of the original method.

To maximise the number of processors which can be built, we choose

the simplest hardware definition necessary to solve graph oriented prob-
lems. The machine model used is SIMD: there is a controller and a

large number of slave processors which can execute the same instruction

stream simultaneously. The processors have exclusively local memory,

and they have no facilities for indirect addressing. The processors must
be connected in a topology with the following requirements: (1) there

must be some path between any two processors; (2} every neighbor

link must be bi-directional, i.e. if A is a neighbor of B, then B must

be a neighbor of A; and (3} the neighbor relations between processors

"THIS WORK WAS SUPPORTED BY THE NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION UNDER NASA CONTRACT NO. NASI-18107
WHILE THE AUTHOR WAS IN RESIDENCE AT ICASE.

must have a consistent invertible labeling. A more precise definition

of the labeling requirements can be found in (Re[. 16). It suIfices that

mo6t networks (Re[. 4} including grid, hypercube, cube connected cy-

cles (Re[. 13), shuffle exchange (Re[. 14}, and mesh of trees (Re[. 7)

are admissible under the scheme. Additional requirements are that the

processors be able to read from or write to their neighbors' memories,

and that at least one of the processors acts as a serial port between the

processors and the controller.

The Massively Parallel Processor (MPP) built by Goodyear

Aerospace is an SIMD architecture with single bit processors arranged

in a 128 by 128 processor grid (Re[. 2}. The MPP is not the perfect

machine for this algorithm since it is limited by its diameter being

V'N, but nevertheless is a good candidate.* A parallel machine design

that fits our model well is the Boolean Vector Machine (BVM} being

built at Duke University which is an SIMD machine that uses the cube

connected cycles interconnection scheme {Re[. 13).

The Connection Machine, produced by Thinking Machines Corpo-

ration, is an SIMD architecture with 64K processors, each with 4K

bits of memory, and complex routing hardware that supports arbitrary

communication (Re[. 5). While a hardware router may be a preferred

method for solving graph problems, many applications do not require

this arbitrary communication facility and would profit by replacing the

equivalent silicon area with more processors and using software for com-

munication. By choosing a software alternative, problems that do not

need generalized communication are more economical and graph ori-

ented problems are still viable. Independent of the argument of whether

one should or should not build an SIMD architecture with routing hard-

ware, the fact remains that architectures such as the MPP are being

built that do not have routing hardware, and routing software extends

their usability.

THE METHOD

In this section we present the concept of conflict-free space-time la-

beling, henceforth referred to as CFST-labeling. Using this labeling

scheme, we present a simple algorithm for data movement and an al-

gorithm for generating CFST-labeling of a graph incrementally.

It is necessary to distinguish between the graph problem being at-

tacked and the computer model being used. The graph being embedded

will be referred to using standard graph terminology with regards to

vertex, edge, and degree. The machine elements are called processors

and wires. Each vertex will be assigned to a different processor. Each

edge in the graph will be realized by a path in the physical network

which is a list of consecutive wires joining adjacent processors. Each

wire specification that is part of a path is referred to as a link.

Traversing all the edges of the embedded graph in parallel will take

more than one step since messages cannot be sent instantaneously but

rather must be passed along through successive neighbors. Traversing

all edges in parallel, referred to as the delivery phase, will be consid-

ered an uninterruptible operation that takes T steps. In addition to

the spatial characterization of a path, a path will also be character-

ized by a relative temporal offset within the delivery phase. Rules are

provided governing paths. Algorithms are presented to create paths

"See (Re[. 3) for an implementation of sorting on the MPP.

CH2649-2/89/0000/0063501.00 © 1988 IEEE

63

incrementally and to transfer a coUection of messages through paths
simultaneously.

We will begin by defining the data structures which will be resident

at each processor.

ALLOCATITn boolean flag indicates that processor

is aneigned • graph vertex

VERTF.X_LABEL --- label of graph vertex

HAS_NEICHBOR[I..neighbor_limit] --- flag indicates
existence of wires

SLOTS[1..T] OF edge path information

START.......... new edge starts here
DIRECTION direction to send

{I.. neighbor_limit. FREE}

END........... edge ends here

bRC LABEL..... label of edge

The ALLOCATED and VERTEX_LABEL fields indicate that the pro-

cessor has been assigned a vertex in the graph. The HAS_NEIGHBOR

field is used to indicate whether a physical wire exists in the particular

direction (e.g. in a flat grid, edge processors only have 3 neighbors, and

corner processors 2, while internal processors have 4); for a completely
regular topology it is superfluous. The SLOTS data structure is the key

to the routing system. It is used in the delivery algorithm to instruct

the processor where to send a message and in the labeling algorithm to

insure that paths are constructed so that no collisions will occur. The

SLOTS array is used to tell the processors what they should do on each
relative time position within the delivery phase.

One of the characteristics of this algorithm is that a fixed path is

chosen to connect two processors and once chosen it is never changed.
For example, consider the grid in Figure 1.

Figure 1.

If there is an edge between vertices in A and H, there are several pos-

sible paths: East-East-South, East-South-East, and South-East-East.

Only one of these paths will be chosen between A and H, and that same

path will always be used. For each edge, the corresponding path is not

only fixed in space (i.e. the set of wires is constant), but is also fixed in

time (the initial delay before the message starts down the path is con-

stant). Once the starting time for the path has been fixed, it is never

changed. Paths do not have to start on time 1, but can be scheduled to

start at some relative offset within the delivery phase. Since there are

no facilities for buffering, a message must proceed continuously along

the specified directions without delay. For instance, if the path is of
length 3 and it starts at time 1, then it will arrive at time 4; if it starts

at time 2, it will be guaranteed to arrive at time 5. Further, it is nec-
essary to place the paths so that no collisions occur; that is, no two

paths can be at the same processor at the same instantin time. The

rulesfor paths that fulfilltheserequirements are listedbelow.

• At most one link can enter a processor at a given time, and at

most one linkcan leavea processorat a given time. Itispossible

to have both one coming and one going at the same time. Note

that this does not mean that a processor can have only one link;

it means that it can have only one link during a particular step in

the delivery phase. It can have as many as T links going through

it (since a delivery phase is length T by definition).

• Any path between two processors (u,v) representing an edge must
consist of links at consecutive time steps. For example, if the path

from processor u to processor v is {u,f,g,h,v}, then if the link from

u-f is assigned time 1, f-g must use time 2, g-h time 3, and h-v time

4. Likewise if u-f occurs at time 5, then link h-v will occur at time

8.

When these rules are used to form paths, the SLOTS structure can be

used to mark the paths. Each path goes through neighboring processors

at successive time steps. For each of these time steps the DIRECTION

field of the SLOTS structure is marked, telling the processor which

direction it should pass a message if it receives it on that time slot.

SLOTS serves both to instruct the processors how to send messages

and to indicate that a processor is busy at a certain time slot so that

when new paths are constructed it can be guaranteed that they won't

conflict with current paths.

Consider the following example. Suppose we are given the directed

graph with vertices A,B,C,D and edges A --, C, B ---, C, B ---* D, and

D --, A (Figure 2), and that vertices A,B,C, and D have been assigned
to successive processors in a linear array. IA linear array is not a good

network for this scheme but convenient for demonstration.) Initially

all slots are free. We proceed to construct a CFST-labeling, placing

each edge in the order it appears in the list above.

Figure 2.

A,B,C,D are successive members in a linear array

I---2---3---4

A---B---C---D

1. A --*C can be completed with the map East-East, so Slots[All1}

= E, Slots[B][2]=E, End[C][2]=TRUE.

2. B --, C can be done with the map East; it can start at time 1,

sinceSlotslB][l] and End[C][1] are free.

3. B --*D goes through C then to D; itsmap is East-East. B is

occupied at time 1 and 2. It is free at time 3, so Slots[B][3]=E,

Slots[C[[4]=E,End[Dl(4]= TRUE.

4. D --*A must go through C,B,A. using map West-West-West. D is

freeon time 1,and C isfreeon time 2, but B isoccupied on time 3.

The path can startfrom D on time 2. Slots[Dl{2]=W, Sbts{Cl{31=

W, Slots[B]{4]= W, End[A][4]=TRUE.

Every processor acts as a conduit for its neighbors' messages. No

processor knows any message's source or destination, but each processor
knows what it must do to establish the local connections.

Given that the paths satisfy the CFST-labeling rules, message de-

livery for graph problems is simple. The paths have been constructed

so that there will be no collisions, and each path link uses consecutive

time slots. The end of a path is specified by setting a separate bit that

is tested after each message is received. A separate start bit in SLOTIk }

indicatesthat a path startsat time k. The start blt is needed because

the SLOTS _wray just tellsthe processors where to send a message,

regardlessof how that message arrived"*. The start array indicates

when a message originates,as opposed to arrivingfrom a neighbor.

The followingalgorithm isbasicto the routing system.

"'Both the START and the STOP hits can be encoded as part of the DIRECTION
field in SLOTS, hut the presented method is simpler to explain and allows for more
el_cient executiDn.

64

PP_CEDURE DELIVER

for i - time 1 to T

FDRALL processors

/* if an edge starts or passes through at this time */
if SLOT[i].START " I or active _ I

for jffil to neighbor-limit

begin
if SLOT[i].direction= j

write message bit to

in-box of neighbor j;

set active = O;

end

FORALL processor that just received a message
if end[i]

move in-box to message-destination;

else

move in-box to out-box;

set active bit - 1;

This code follows the method described above. The time slots are

looped through, and the messages are passed in the appropriate direc-

tions as specified in the SLOTS array. Two bits, in-box and out-box,

are used for message buffering.

The time complexity of data movement is O(T x nelghbor_limit).

Since the number of neighbors is assumed to be a small constant for

each network, the complexity is O(T}. This suggests that networks

with fewer neighbors have advantages. For instance, the hypercube

network has logN neighbors, and the cube connected cycles network

has 3 neighbors. Empirical results (Ref. 17} shows that while hypercube

uses a smaller T, CCC actually has a faster overall delivery time.

Setting up Message Paths

One of the goals in developing this system was to have a method for

adding new edges quickly. Paths are added so that they don't conflict

with any old path. Once a path is placed it will not be re-routed by

the basic placement algorithm; it will always start at the same spot at

the same time. The basic idea of the method for placing a connection

is to start from the source processor and in parallel examine all pos-

sible paths outward from it that do not conflict with pre-established

paths. As the trial paths are flooding the system, they are recorded

in temporary storage. At the end of this deluge of trial paths, if the

destination processor has been reached, then a real path exists. Using

the stored information a path can be ba_ktraced and recorded. This

is similar to the Lee-Moore routing algorithm (Refs. 6, 8) for finding a

path in a system.

Suppose that the connection (u,v) is to be added. First it is assumed

that processors for u and v have already been determined, otherwise

(for now) assume a random allocation from a pool of free processors.

It is necessary to find a path between u and v that does not conflict

with any of the existing paths. The method for doing this is a type of

flooding. A breadth-first search will be performed in parallel starting

at the source processor. A record is kept of the trial paths resulting

from this search. The paths must adhere to the CFST labeling rules, so

a trial path must not conflict with paths that are already established.

For instance, suppose a trial path starts at time 1 and moves to a

neighboring processor, but that neighbor is already busy at time 1

(as can be seen by examining the DIRECTION-SLOT.) Since a path

that would go through this neighbor at this time is not legal, the trial

path would commit suicide, that is, it stops propagating itself. If the

processor slot for time 2 was free, the trial path would attempt to

propagate itself to that processor's neighbors at time 3.

Trial paths are recorded in a structure called TRIALSLOTS. A trial

path knows if the next time slot is occupied by referring to the SLOTS

data structure. If the destination processor is reached by a path, it

will be a path that does not violate the rules. Therefore we can trace

backwards from the destination processor using the markings in TRI-

ALSLOTS and transfer this good path to the actual SLOTS structure.

PERFORMANCE

Adding an edge (assuming one can be added), deleting any set of

edges, or traversing all the edges in parallel, all have time complexity

O(T x neighbor.limit). If it is assumed that neighbor_limit is a small

constant then the complexity is O(T). Since T is related both to the

time and space needed, it is a crucial factor in determining the value of

the algorithms presented. Some analytic bounds on T were presented

in IRef. 16), but it is difficult to get a tight bound on T for general in-
terconnection networks and dynamically changing graphs. For the case

where the graph is known a priori an upper bound of O{logaN) can

be achieved on a hypercube. This is obtained by applying a result by

Nassimi and Sahni (Ref. 10) in which they present a method for data

broadcasting in SIMD computers which conforms to the CFST-labeling
rules.

Of major interest is the on-line case, where edges are added and

deleted dynamically. A simulator was constructed to examine the be-

havior of the algorithms. Besides the simulated data, the algorithms

mentioned were actually implemented for the Connection Machine.

The data presented by the simulator is consistent with that produced

by the real machine. The major result is that the size of T appears

proportional to the average degree of the graph times the average path

length in the embedding.

This is a highly significant result. If it is assumed that the av-
erage number of connections and the neighbor-limit are bounded by

small constants then the time for a parallel traversal operation, is,

the worst case, O(diameter). This indicates that the algorithm per-

forms optimally for routing random communication graphs, since a

random graph can have connections between processors that are dis-

metrically opposed. If it assumed that the diameter is O(logN} then

Cr isO(logN).

This bound indicates that the methods presented here are compet-

itive with existing methods for parallel traversal in SIMD architec-

tures. Some methods for SIMD parallel communication were men-

tioned in the introduction. Permutations can be done in O(logN) time

(Refs. 9, 10). Sorting can be done in essentially O{log2N) time, us-

ing (Ref. 12) or Butcher (Ref. 1) combined with Thompson (Ref. 15).

These methods are restricted to permutations and sorting. One of

the advantages of the method presented here is the ability to deal

with graphs that are more general. Using the previous methods,

if the connections specified a complete permutation, and addition-

ally some processor also wanted to connect to two other processors,

three entire permutations must be performed because the complexity

is diameter × max_number_of_connections. In our system some items
can have more connections than others without substantially increas-

ing T. This result is achieved because the complexity of this method is

based on the diameter x AVERAGE.number_of-connections, rather
than the maximum number. The method used here also has the ad-

vantage that new connections can be added easily, unlike the other

methods which require the entire set-up to be re-computed.

A further advantage of this method is the ability to exploit locality.

Since the heuristic for T is dependent on the average path length,

situations where the embedding can be arranged so that processors

connect to those in some neighborhood will produce smaller values of

T.

BRANCHING PATHS

There are many variations of this basic method that can be exploited.

Among these are heuristics for picking shortest paths, assignment of

node to processor, and choosing paths so as to avoid congestion. A

discussionof thesemethods can be found in IRef.16).

A significantand important extension of the general CFST label-

ing rulesinvolvesa generalisationthat we referto as branching paths.

Branching paths isactuallya form ofbroadcasting. Rather than having

each arc represented by a differentpath, arcs startingfrom the same

vertex can be combined forgreaterefficiency.However, thisgain comes
at the lossof two features.

65

The first is an obscure feature. In the basic CFST method presented,
the system is identically free of conflicts whether it is run forwards or

backwards. That is, rather than have an algorithm that starts at step 1

in the delivery cycle and initiates messages with the START bit marked,

it is possible to write a _snd backward5 algorithm which, using the same

SLOTS structure, will start at time T initiating those links that STOP

at the processors, and work backwards to time 1, reversing all the

links, until the values get to the source. If one wished to implement a

bi-directional graph rather than a directed graph, instead of actually

putting in two sets of wires {from each pair u --, v and then v --, u),

one could just put in one set of wires, pass the values in the forward

directions, then reverse it and pass the values back again.

The second and greater issue involves the nature of the messages that

are passed along the arcs. If the application requires that a different
message be passed along each arc, then it will not be possible to use this

combining method. However, if all connecting processors are passed the

same value, or the same value modified by a different constant, then
this variation is viable. Many applications, including circuit simulation

and neural networks f_.ll into this class.

In the standard method, each arc in the original graph becomes a

path in the embedding.

Figure 3.

For example, Figure 3 shows a graph in which one vertex is connected

to all others. Mapped onto a linear arry, each arc becomes a path

{Figure 4).

Figure 4.

The branching path method adheres to the CFST labeling rules, but

alters the premise that each arc in the original graph is represented by

a separate path. Instead, the set of arcs associated with each vertex

can be represented by a set of branching paths. A branching path has

two characteristics that differ from a standard path between two nodes.

The first is that a path can _drop off" values at intermediate nodes in

the path. For example, Figure 5 shows that a single path can be used

to deliver messages to all intermediate vertices. Essentially, processors

along the same route can share the path.

Figure 5.

In addition to path sharing,the otherabilityistoallow paths to branch

out, or broadcast to theirneighbors. For example, Figure 6 shows a

gridin which processor A isconnected to B and C. This isrepresented

with one branching path.

Ii i
Figure 6.

More formally,as before,each vertexin the originalgraph ismapped

to a processor in the network topology. The set of arcs associated

with each vertex willbe representedas a set ofdirected acyclicgraphs

(DAG). For each arc (u,tJ),there must be a DAG, D, whose root is

u which has _ as either a leaf node, or an internal node. For any leaf

node t# in the graph D with root u, (u,w) must be a an arc in the

originalgraph. Further, in the family of DAGs which represent the

arcs originatingfrom the root u, each arc in the originalgraph can be

represented only once. That is,ifa graph has root u and leafw, then

no other graph with root u can have leafto. Likewise, any internal

node that isa destination must be marked to indicate that itis not

justan intermediatenode inthe route,but rather a drop-offpoint. Ifa

graph with root t*h_s ffispeciallymarked internalnode v representing

arc {u,v}, then no other graph with root u can have v has a specially

marked node_ although v can appear without a marking. As in the

originalmethod, each arc isonly represented once,although paths can

go through other nodes that are not part of tlieirmessage destination.

For example, in figure6, A connects to B and C. Suppose that A

were also connected to W. In thiscase W would have to be marked to

indicate itnot just an intermediatenode in the graph. Further, ifA

were to connect to Q, thiscould be represented by a separate graph as

a path going through W. But, W could only be a destinationvertex in

one of the two graphs.

Another aspect of thisdefinitioninvolvesthe nature ofthe messages.

Ifallverticesthat u connects to receivethe same value message then

the definitionmentioned above is fine. Ifall receivethe same value

message multipliedby a differentconstant,itisalso fine,because each

constant can be stored at the destinationnode, so allconnecting arcs

willbe passed the same value,and multiplicationwilloccur atthe time

of delivery.However, ifconnecting values are trulydifferent,then no

two arcs (u, v), (u, w) that have different arc weights can be represented

by the same DAG. Hence, in the original case, where we assumed that

each arc receives a different dynamic value, each arc would have to be

representedby a separate DAG, which would be a DAG with only one

leaf,which isour definitionofa path. So the originalmethod issimply
a subset ofthismethod.

Having defined thisfamily of graphs that represent the arcs in the

new embedding, we proceed to labelthem according to an extensionto

the CFST labelingrules.The firstrule,non-exclusion,originallysaid

that at most one connection can enter a processor at a given time and

at most one can leave.Now we allow more than one to leaveprovided

that the connection isdefined as part of the same DAG. The second

rule,of contiguous time, stillholds. When a path splitsinto two or

more branches, each of the connections proceeds at the same time, as

illustratedpreviouslyin Figure 6.

A small clarification:strictlyspeaking_ the branching paths do not

have to be DAGS, that is,they don't have to be acyclic. That is,

when a connection reaches a processor,itdoes so at some time i,and

itispossiblefor the path to loop back on itself,which willoccur at

some latertime j. While usuallysuch loops are inefficient,sometimes

they are used to avoidjams in the system, and further,they can occur

naturallyas part of the algorithms which findspaths. In terms of the

staticalgorithm,a way to avoid the conceptual messiness of cycles is

Algorithm Updates

The algorithmschange sxtrprisinglylittle.The algorithm for delivering

the messages doesn't change at all. The loop which checks for the

marked directionand passesthe valuein the appropriate directionmay

66

simply see, for instance, that the North bit is on, and so passes it north,

and then checks that the West bit is on, and passes likewise within the

same time step. Since, because of the SIMD nature of the machine, it

is already necessary to loop through the different directions, no extra

work is done.

The algorithm for finding a new path requires a small modifica-

tion. In the original method, paths propagate from the source through

neighboring processors which are not already busy. To encorporate the

branching path method, during the spreading method all connections

which start from the source are activated, as they would be during the

normal delivery cycle, and these active processors are included as part

of the path spreading. That is, if a processor would normally be active

at time i if it were sending a message from the source as part of its

normal delivery cycle, then on time i + 1 it will attempt to propagate

a new path to its neighbors. If the shortest path heuristic is used (Ref.

17), so that each trial path has a length associated with it, then a new

path that is formed as a branch or continuation off an old path starts

at length 0 from that branch point, rather than starting at length 0

from the source. For problems that do not require unique values to

be passed and that have multiple connections per vertex, these minor

changes allow for a much more efficient message delivery system.

Analysis

The basic comments on analysis are the same as for the original case.

A message delivery cycle still takes O(T), where T is the number of

slots, but by using the branching paths, T can be much smaller. As an

example, we take the case of a fully connected graph embedded in a

linear array. We know that the lower bound on T is the eutwidth of the

resulting embedding {Ref. 17). When embedding the fully connected

graph in a line using the original method, the maximum cutwidth is

O(N2), and in the branching path method it is O(N). Hence, in this

case the savings between the two methods is substantial. While this is

an unusual examp]e_ it gives an idea of the advantages. Some empirical

results on the on-line random graph examples, of the type done in (Ref.

17), tend to show an improvement of a factor of 2 to 3 over the original

method. These results are preliminary and haven't been statistically

validated.

CONCLUSION

Some simple algorithms have been presented which allow arbitrary

graphs to be embedded in SIMD architectures having a variety of

topologies. The time for performing a parallel traversal and for adding

a new connection appears to be proportional to the average path length

in the embedding, times the average number of arcs in the graph being

embedded. Since the average path length is no more than the diam-

eter of the network, the method is competitive with existing methods

for SIMD routing, with significant advantages for graphs that can ex-

ploit locality. Additional advantages are that there are no a priori

requirements for the form of the data, the topological requirements are

extremely general, and new arcs can be added without reconfiguring

the entire system. The simplicity of the implementation and the flex-

ibility of the method suggest that it could be an important tool for

using SIMD architectures as graph processing machines.

REFERENCES

1. K. Butcher, _Sorting Networks and their Applications, _ Proceedings of

AFIPS 1968 SJCC, pp. 307-314.

2. K. Butcher, aDeslgn of a Massively Parallel Processor, _ IEEE Traps on

Computers_ Sept 1980, pp. 836-840.

3. J.E. Dorband, "Sort Computation and Conservative Image Registra-

tion _, Ph.D. Thesis, Pennsylvania State University, Dec. 1985.

4. T. Feng, "A Survey of Interconnection Networks," Computer, Dec 1981,

pp.12-27.

5. W. Hillh L "The Connection Machine," kilT Press, Cambridge, Mass.,
1985.

6. C. Lee, "An algorithm for path connections and its applications," IRE

Traps. glee. Comput., Vol. EC-10, Sept. 1961, pp. 346-365.

7. T. Leighton, "Parallel Computation Using Meshes of Trees," Proc. In-

ternational Workshop on Graph Theory Concepts in Computer Science,
1983.

8. E. Moore, "Shortest path through a mazej _ Annals of Computation Lab-

oratory, Vol. 30, Harvard Univ. Press, 1959, pp. 285-292.

9. D. Nassiml and S. Sahni, _Parallel Algorithms to Set-up the Bones

Permutation Network, _ Proc. Workshop on Interconnection Networks for

Parallel and Distributed Processing, April 1980.

10. D. Nassimi and S. Sahni, _Benes Network and Parallel Permutation

Algorithms, _ IEEE Trar_sactions on Computers, Vol. C-30, No. 5, May

1981, pp. 332-340.

11. D. Nassimi and S. Sahni, _Data Broadcasting in SIMD Comput-

ere,_lEgE Trapsaetiona on Computers, Vol. C-30, No. 2, Feb 1981, pp.

101-106.

12. D. Nassimi and S. Sahnl, _Parallel Permutation and Sorting Algorithms

and a New Generalised Connection Network, _ JACM, Vol. 29, No. 3,

July 1982, pp. 642-667.

13. F. Preparata and J. Vuillemin, _The Cube Connected Cycles: a Versatile

Network for Parallel Computation, m Comm. ACM, Vol. 24, No. 5, May

1981, pp. 300-309.

14. H. Stone, _Parallel processing with the perfect shuffle," IEEE Trans.

Computers, Vol. C-20, No. 2, Feb. 1971, pp. 153-161.

15. C. Thompson, "Generalised Connection Networks for Parallel Processor

Intercommunication," IEEE Tran. Computers Vol. C-27, Dec. 1978, pp.

1119-1125.

16. S. Tomboulian, "A System for Routing Arbitrary" Communication

Graphs on SIMD Architectures, _ Doctoral Dissertation, 1986,Dept. of

Computer Science, Duke University, Durham, NC.

17. S. Tomboullan, aA System for Routing Directed Graphs on SIMD Ar-

chitectures _, ICASE Report No. 87-14, NASA Langley Research Center,

Hampton, VA (updated 1988).

18. tL Wagner, _The Boolean Vector Machine, _ IEEE 1983 Conference Pro-

ceedinge of the lO_h Annual International Symposium on Computer Archi-

tecture, pp. 59-66.

67

